Quadrupole Pick-Ups at CERN & Fermilab

A. Jansson FNAL

Talk outline

- → The quad pick-ups in the CERN PS
- The quad pick-up in the Fermilab AA
- Possibilities for LHC (and Tevatron)

What is a quadrupole pick-up?

- A pick-up sensitive to the r.m.s. beam size.
- Uses the small non-linear terms in electrode response to particle position to measure quadrupole moment.
- Quadrupole moment is a measure of ellipticity.

$$\frac{B-D}{A+B+C+D} \propto x = \text{horizontal position}$$

$$\frac{(B+D)-(A+C)}{A+B+C+D} \propto \sigma_x^2 - \sigma_y^2 + x^2 - y^2 = \text{quadrupole moment}$$

PS pick-ups

- Magnetic coupling.
 - Insensitive to radiation
 - \rightarrow Signal on 50Ω
- Intensity signal is suppressed by pick-up geometry (coupling to the radial field component).
- Bandwidth ~25 MHz (covers full bunch spectrum at injection)
- Two pick-ups installed in machine.

Ouput signals (7ime Domain)

Output signals (Frequency Domain)

- Peaks are wide due to fast decoherence (caused by space charge tune spread).
- Working point in PS machine often make signals overlap in frequency domain.
- Need two pick-ups in optically different locations to separate H/V quad signal components!

Position contribution to quad moment

Position contribution (mm^2)

- Data with only beam position oscillations (taken after filamentation).
- Quadrupole moment versus its expected position contribution x²-y² should be straight line with unit slope, as obesrved.
- The position contribution can be subtracted with good accuracy!

Comparison with Wire Scanners

- Comparison Quad PU vs. Wire-scanner on stable beam.
- Several different beam types.

Systematic error bar from:

→ Beta function ~10%

→ Dispersion ~10%

→ Mom. spread ~3%

Measurement of matching

$$\kappa \propto \sigma_{x}^{2} - \sigma_{y}^{2} =$$

$$\varepsilon_{x}(\beta_{x} + \Delta \beta_{x}) - \varepsilon_{y}(\beta_{y} + \Delta \beta_{y}) +$$

$$+ \sigma_{p}^{2}(D_{x}^{2} + D_{x}\Delta D_{x}) + \Delta D_{x}^{2} - \Delta D_{y}^{2})$$

$$+ \Delta D_{y}^{2} - \Delta D_{y}^{2}$$

- Simultaneous fit to the two pick-up signals gives:
 - Injected emittances.
 - Betatron mismatches.
 - Horizontal dispersion mismatch.

- "Best fit" tunes gives information on space charge.
- Fixed tune give wrong fit results for matching parameters.

Injection matching measurement

Betatron mismatch

$$k_{\beta} = \begin{pmatrix} \frac{\Delta \beta}{\beta} \\ \frac{\Delta \beta}{\beta} \alpha - \Delta \alpha \end{pmatrix}$$

Dispersion mismatch

$$k_{D} = \begin{pmatrix} \frac{\Delta D}{\sqrt{\beta}} \\ \frac{\Delta D}{\sqrt{\beta}} \alpha + \sqrt{\beta} \Delta D' \end{pmatrix}$$

Measurement of filamented emittance

For a stable beam, the emittance can be calculated from only two pick-up readings.

$$\kappa = \sigma_x^2 - \sigma_y^2$$

$$\kappa_1 = \varepsilon_x \beta_{x1} - \varepsilon_y \beta_{y1} + \sigma_p^2 D_{x1}^2$$

$$\kappa_2 = \varepsilon_x \beta_{x2} - \varepsilon_y \beta_{y2} + \sigma_p^2 D_{x2}^2$$

- Different horizontal/vertical beta function ratios at the two pick-ups are required.
- Signal noise can be reduced by averaging over many turns.

Measurements within the bunch

Normalized for intensity in each point separately.

Variation in quad moment along bunch mainly due to dispersion and momentum spread.

Fermi Pbar Accumulator 2-pickup

- Un-terminated strip-line.
- Motors to center pickup on beam.
- LP preamps (only 1st harmonic) in tunnel.
- Can inject calibration signal to balance preamps.
- No hybrid used. Plate signals sampled directly on 14 bit ADCs at up to 10 MHz (16x per revolution).
- Injected beam is a train of typically 7-35 bunches at 53 MHz (1/12-5/12 of the circumference).

Ref: Vladimir Nagaslaev

Lessons from beam measurements

- Initial transient signal due to intensity step and limited bandwidth.
- Beam loss on electrodes at injection.
- Fast decoherence due to large chromaticity at extraction orbit.
- This makes it hard to interpret data from parasitic measurements
- With lowered chromaticity (dedicated measurements) performance is adequate.

Ref: Vladimir Nagaslaev

Measurements with low chromaticity

Read Data Save Data

DAQ init-> DAQ setup-> DAQ start

t, usec

DX signal fit

f0: 628727.0

Q: 0.0062

Refresh data

Time domain data fits the model

Ref: Vladimir Nagaslaev

Frequency components behave as expected when changing steering and matching

bx 0.7011 sx 1011.8

by: 0.6891 sy: 1031.8

bxx 0.9977 sxx 681.4

Print Both

Read Calib

<<Zoom OUT

<<Zoom OUT

Freq. cut-off

high 50

Calibration Info

0.992

0.955

628727

Zuad pick-ups in the LHC?

- Are they wanted/needed?
- What is the time resolution required?
 - → Single turn (BW=f_{rev}) is the minimum, and may be adequate e.g. for dedicated measurements (pilot bunch?). Relatively straight-forward to build.
 - → Single bunch (BW=f_{rep}) is desirable e.g. for parasitic measurements during normal operation. Requires some R&D.
 - → Intra-bunch resolution (BW=1/t_{bunch}) helpful to diagnose e.g. head-tail motion, but may not be needed if beam is properly set up. May be difficult to achieve for LHC (~GHz).
- → The better the time resolution, the easier it is to understand what's going on (less dependent on assumptions).

How build a wideband quad pick-up?

- → The PS pick-up's common mode rejection is limited at high frequencies by resonances in the magnetic induction loop.
- Reducing the loop dimensions could perhaps gain a factor 3-4 in frequency, but also reduces coupling.
- → Removing the resonances require breaking the loop and adding matched terminations ⇒ strip-lines.
- → With a good WB hybrid, can get >60dB CMRR over ~200 MHz bandwidth (see CERN PS/BD Note 99-09).

Mide-band hybrid coupler

Summary

In the PS:

- Betatron mismatch of a few percent could be detected (both amplitude and phase).
- Emittance was measured, in rather good agreement with wirescanners.

In the Fermi pbar accumulator:

- Clean signals (mismatch) obtained in dedicated studies.
- Difficult to interpret parasitic measurements.

> For the LHC:

- Single turn (narrow band) should be straight-forward.
- Single bunch (wide band) needs some work, but seems possible using e.g. stripline couplers and WB hybrids.
- Tevatron could act as test-bench and benefit from LHC design work.

